Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.650
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 74, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691182

RESUMEN

A Gram-stain positive, aerobic, alkalitolerant and halotolerant bacterium, designated HH7-29 T, was isolated from the confluence of the Fenhe River and the Yellow River in Shanxi Province, PR China. Growth occurred at pH 6.0-12.0 (optimum, pH 8.0-8.5) and 15-40℃ (optimum, 32℃) with 0.5-24% NaCl (optimum, 2-9%). The predominant fatty acids (> 10.0%) were iso-C15:0 and anteiso-C15:0. The major menaquinones were MK-7 and MK-8. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain HH7-29 T was a member of the genus Jeotgalibacillus, exhibiting high sequence similarity to the 16S rRNA gene sequences of Jeotgalibacillus alkaliphilus JC303T (98.4%), Jeotgalibacillus salarius ASL-1 T (98.1%) and Jeotgalibacillus alimentarius YKJ-13 T (98.1%). The genomic DNA G + C content was 43.0%. Gene annotation showed that strain HH7-29 T had lower protein isoelectric points (pIs) and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt and alkali. The average nucleotide identity, digital DNA-DNA hybridization values, amino acid identity values, and percentage of conserved proteins values between strain HH7-29 T and its related species were 71.1-83.8%, 19.5-27.4%, 66.5-88.4% and 59.8-76.6%, respectively. Based on the analyses of phenotypic, chemotaxonomic, phylogenetic and genomic features, strain HH7-29 T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus haloalkalitolerans sp. nov. is proposed. The type strain is HH7-29 T (= KCTC 43417 T = MCCC 1K07541T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Ríos , ARN Ribosómico 16S/genética , China , Ríos/microbiología , ADN Bacteriano/genética , Ácidos Grasos/análisis , Cloruro de Sodio/metabolismo , Técnicas de Tipificación Bacteriana , Fosfolípidos/análisis , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico
2.
Nat Commun ; 15(1): 4085, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744837

RESUMEN

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Asunto(s)
Amoníaco , Compuestos de Amonio , Bacterias , Ecosistema , Óxido Nitroso , Ríos , Óxido Nitroso/metabolismo , Ríos/microbiología , Ríos/química , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Amoníaco/metabolismo , Metagenoma , Agricultura , Nitratos/metabolismo , Desnitrificación , Nitrificación , Redes y Vías Metabólicas/genética
4.
PeerJ ; 12: e17096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699181

RESUMEN

Background: Leptospirosis is a water-related zoonotic disease. The disease is primarily transmitted from animals to humans through pathogenic Leptospira bacteria in contaminated water and soil. Rivers have a critical role in Leptospira transmissions, while co-infection potentials with other waterborne bacteria might increase the severity and death risk of the disease. Methods: The water samples evaluated in this study were collected from four recreational forest rivers, Sungai Congkak, Sungai Lopo, Hulu Perdik, and Gunung Nuang. The samples were subjected to next-generation sequencing (NGS) for the 16S rRNA and in-depth metagenomic analysis of the bacterial communities. Results: The water samples recorded various bacterial diversity. The samples from the Hulu Perdik and Sungai Lopo downstream sampling sites had a more significant diversity, followed by Sungai Congkak. Conversely, the upstream samples from Gunung Nuang exhibited the lowest bacterial diversity. Proteobacteria, Firmicutes, and Acidobacteria were the dominant phyla detected in downstream areas. Potential pathogenic bacteria belonging to the genera Burkholderiales and Serratia were also identified, raising concerns about co-infection possibilities. Nevertheless, Leptospira pathogenic bacteria were absent from all sites, which is attributable to its limited persistence. The bacteria might also be washed to other locations, contributing to the reduced environmental bacterial load. Conclusion: The present study established the presence of pathogenic bacteria in the river ecosystems assessed. The findings offer valuable insights for designing strategies for preventing pathogenic bacteria environmental contamination and managing leptospirosis co-infections with other human diseases. Furthermore, closely monitoring water sample compositions with diverse approaches, including sentinel programs, wastewater-based epidemiology, and clinical surveillance, enables disease transmission and outbreak early detections. The data also provides valuable information for suitable treatments and long-term strategies for combating infectious diseases.


Asunto(s)
Brotes de Enfermedades , Leptospirosis , ARN Ribosómico 16S , Ríos , Microbiología del Agua , Leptospirosis/epidemiología , Leptospirosis/microbiología , Leptospirosis/transmisión , Humanos , ARN Ribosómico 16S/genética , Ríos/microbiología , Leptospira/genética , Leptospira/aislamiento & purificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Animales
5.
Artículo en Inglés | MEDLINE | ID: mdl-38700930

RESUMEN

Four newly discovered Gram-stain-negative bacteria, designated as BL00010T, BL00058, D8-11T and BL00200, were isolated from water samples collected at three hydrological monitoring stations (namely Chiang Saen, Chiang Khan and Nong Khai) located along the Mekong River in Thailand. An investigation encompassing phenotypic, chemotaxonomic and genomic traits was conducted. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that all four isolates represented members of the genus Rhodoferax. These isolates were closely related to Rhodoferax bucti KCTC 62564T with a similarity of 99.59%. The major fatty acids of the four novel isolates included C16:0 and C16:1ω7c and/or C16 : 1ω6c, whereas the major respiratory quinone was identified as ubiquinone Q-8. In addition, phosphatidylethanolamine was identified as a major polar lipid in these bacteria. The genomes of BL00010T, BL00058, D8-11T and BL00200 were similar in size (3.88-4.01 Mbp) and DNA G+C contents (59.5, 59.3, 59.5 and 59.3 mol%, respectively). In contrast to R. bucti KCTC 62564T and Rhodoferax aquaticus KCTC 32394T, the newly discovered species possessed several genes involved in nitrite and nitrile metabolism, which may be related to their unique adaptation to nitrile-rich environments. From the results of the pairwise analysis of average nucleotide identity of the whole genome and digital DNA-DNA hybridisation, it was evident that BL00010T and D8-11T represented two novel species, for which we propose the nomenclature Rhodoferax potami sp. nov., with the type strain BL00010T (TBRC 17198T = NBRC 116413T), and Rhodoferax mekongensis sp. nov., with the type strain D8-11T (TBRC 17307T = NBRC 116415T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Ríos , Análisis de Secuencia de ADN , Ubiquinona , Tailandia , ARN Ribosómico 16S/genética , Ríos/microbiología , ADN Bacteriano/genética , Ácidos Grasos/química , Genoma Bacteriano , Fosfatidiletanolaminas , Hibridación de Ácido Nucleico
6.
J Hazard Mater ; 471: 134377, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663298

RESUMEN

The Ganga is the largest river in India, serves as a lifeline for agriculture, drinking water, and religious rites. However, it became highly polluted due to the influx of industrial wastes and untreated sewages, leading to the decline of aquatic biodiversity. This study investigated the microbial diversity and plastic-xenobiotic degrading enzymes of six sediment metagenomes of river Ganga at Prayagraj (RDG, TSG, SDG) and Devprayag (KRG, BNG, BRG). The water quality parameters, higher values of BOD (1.8-3.7 ppm), COD (23-29.2 ppm) and organic carbon (0.18-0.51%) were recorded at Prayagraj. Comparative analysis of microbial community structure between Prayagraj and Devprayag revealed significant differences between Bacteroidetes and Firmicutes, which emerging as the predominant bacterial phyla across six sediment samples. Notably, their prevalence was highest in the BRG samples. Furthermore, 25 OTUs at genus level were consistent across all six samples. Alpha diversity exhibited minimal variation among samples, while beta diversity indicated an inverse relationship between species richness and diversity. Co-occurrence network analysis established that genera from the same and different groups of phyla show positive co-relations with each other. Thirteen plastic degrading enzymes, including Laccase, Alkane-1 monooxygenase and Alkane monooxygenase, were identified from six sediment metagenomes of river Ganga, which can degrade non-biodegradable plastic viz. Polyethylene, Polystyrene and Low-density Polyethelene. Further, 18 xenobiotic degradation enzymes were identified for the degradation of Bisphenol, Xylene, Toluene, Polycyclic aromatic hydrocarbon, Styrene, Atrazene and Dioxin etc. This is the first report on the identification of non-biodegradable plastic degrading enzymes from sediment metagenomes of river Ganga, India. The findings of this study would help in pollution abatement and sustainable management of riverine ecosystem.


Asunto(s)
Bacterias , Biodegradación Ambiental , Sedimentos Geológicos , Ríos , Sedimentos Geológicos/microbiología , Ríos/microbiología , Ríos/química , Bacterias/genética , Bacterias/enzimología , Biodiversidad , Xenobióticos/metabolismo , Contaminantes Químicos del Agua/análisis , India , Plásticos , Metagenoma , Metagenómica , Compuestos de Bencidrilo
7.
J Hazard Mater ; 471: 134353, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678707

RESUMEN

Aquatic microplastics (MPs) act as reservoirs for microbial communities, fostering the formation of a mobile resistome encompassing diverse antibiotic (ARGs) and biocide/metal resistance genes (BMRGs), and mobile genetic elements (MGEs). This collective genetic repertoire, referred to as the "plastiome," can potentially perpetuate environmental antimicrobial resistance (AMR). Our study examining two Japanese rivers near Tokyo revealed that waterborne MPs are primarily composed of polyethylene and polypropylene fibers and sheets of diverse origin. Clinically important genera like Exiguobacterium and Eubacterium were notably enriched on MPs. Metagenomic analysis uncovered a 3.46-fold higher enrichment of ARGs on MPs than those in water, with multidrug resistance genes (MDRGs) and BMRGs prevailing, particularly within MPs. Specific ARG and BMRG subtypes linked to resistance to vancomycin, beta-lactams, biocides, arsenic, and mercury showed selective enrichment on MPs. Network analysis revealed intense associations between host genera with ARGs, BMRGs, and MGEs on MPs, emphasizing their role in coselection. In contrast, river water exhibited weaker associations. This study underscores the complex interactions shaping the mobile plastiome in aquatic environments and emphasizes the global imperative for research to comprehend and effectively control AMR within the One Health framework.


Asunto(s)
Microplásticos , Ríos , Ríos/microbiología , Ríos/química , Microplásticos/toxicidad , Antibacterianos/farmacología , Contaminantes Químicos del Agua/toxicidad , Bacterias/genética , Bacterias/efectos de los fármacos , Microbiología del Agua , Secuencias Repetitivas Esparcidas , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Desinfectantes/farmacología , Microbiota/efectos de los fármacos , Farmacorresistencia Microbiana/genética
8.
Chemosphere ; 357: 141918, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614394

RESUMEN

Aeromonas spp. are frequently encountered in aquatic environments, with Aeromonas veronii emerging as an opportunistic pathogen causing a range of diseases in both humans and animals. Recent reports have raised public health concerns due to the emergence of multidrug-resistant Aeromonas spp. This is particularly noteworthy as these species have demonstrated the ability to acquire and transmit antimicrobial resistance genes (ARGs). In this study, we report the genomic and phenotypic characteristics of the A. veronii TR112 strain, which harbors a novel variant of the Vietnamese Extended-spectrum ß-lactamase-encoding gene, blaVEB-28, and two mcr variants recovered from an urban river located in the Metropolitan Region of São Paulo, Brazil. A. veronii TR112 strain exhibited high minimum inhibitory concentrations (MICs) for ceftazidime (64 µg/mL), polymyxin (8 µg/mL), and ciprofloxacin (64 µg/mL). Furthermore, the TR112 strain demonstrated adherence to HeLa and Caco-2 cells within 3 h, cytotoxicity to HeLa cells after 24 h of interaction, and high mortality rates to the Galleria mellonella model. Genomic analysis showed that the TR112 strain belongs to ST257 and presented a range of ARGs conferring resistance to ß-lactams (blaVEB-28, blaCphA3, blaOXA-912) and polymyxins (mcr-3 and mcr-3.6). Additionally, we identified a diversity of virulence factor-encoding genes, including those encoding mannose-sensitive hemagglutinin (Msh) pilus, polar flagella, type IV pili, type II secretion system (T2SS), aerolysin (AerA), cytotoxic enterotoxin (Act), hemolysin (HlyA), hemolysin III (HlyIII), thermostable hemolysin (TH), and capsular polysaccharide (CPS). In conclusion, our findings suggest that A. veronii may serve as an environmental reservoir for ARGs and virulence factors, highlighting its importance as a potential pathogen in public health.


Asunto(s)
Aeromonas veronii , Antibacterianos , Pruebas de Sensibilidad Microbiana , Ríos , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Humanos , Antibacterianos/farmacología , Ríos/microbiología , Aeromonas veronii/genética , Aeromonas veronii/aislamiento & purificación , Aeromonas veronii/efectos de los fármacos , Brasil , Células HeLa , Células CACO-2 , Animales , Farmacorresistencia Bacteriana Múltiple/genética
9.
J Hazard Mater ; 470: 134202, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581873

RESUMEN

The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum ß-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health.


Asunto(s)
COVID-19 , Farmacorresistencia Bacteriana , Ríos , COVID-19/epidemiología , Brasil/epidemiología , Humanos , Ríos/microbiología , Antibacterianos/farmacología , SARS-CoV-2/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Pandemias
10.
Sci Total Environ ; 927: 172261, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583611

RESUMEN

The objective of this study was to comprehensively characterise the resistome, the collective set of antimicrobial resistance genes in a given environment, of two rivers, from their source to discharge into the sea, as these flow through areas of different land use. Our findings reveal significant differences in the riverine resistome composition in areas of different land uses, with increased abundance and diversity of AMR in downstream agricultural and urban locations, with the resistome in urban areas more similar to the resistome in wastewater. The changes in resistome were accompanied by changes in microbial communities, with a reduction in microbial diversity in downstream agricultural and urban affected areas, driven mostly by increased relative abundance in the phyla, Bacteroidetes and Proteobacteria. These results provide insight into how pollution associated with agricultural and urban activities affects microbial communities and influences AMR in aquatic water bodies. These results add valuable insights to form effective strategies for mitigating and preserving aquatic ecosystems. Overall, our study highlights the critical role of the environment in the development and dissemination of AMR and underscores the importance of adopting a One Health approach to address this global public health threat.


Asunto(s)
Agricultura , Ríos , Ríos/microbiología , Agricultura/métodos , Monitoreo del Ambiente , Microbiota/efectos de los fármacos , Microbiología del Agua , Farmacorresistencia Bacteriana/genética , Aguas Residuales/microbiología , Bacterias/genética , Bacterias/efectos de los fármacos
11.
PeerJ ; 12: e17199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680892

RESUMEN

Carbapenem-resistant Acinetobacter spp. is associated with nosocomial infections in intensive care unit patients, resulting in high mortality. Although Acinetobacter spp. represent a serious public health problem worldwide, there are a few studies related to the presence of carbapenemases in health care facilities and other environmental settings in Ecuador. The main aim of this study was to characterize the carbapenem-resistant Acinetobacter spp. isolates obtained from four hospitals (52) and from five rivers (27) close to Quito. We used the disc diffusion and EDTA sinergy tests to determine the antimicrobial susceptibility and the production of metallo ß-lactamases, respectively. We carried out a multiplex PCR of gyrB gene and the sequencing of partial rpoB gene to bacterial species identification. We performed molecular screening of nine carbapenem-resistant genes (blaSPM, blaSIM, blaGIM, blaGES, blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143) by multiplex PCR, followed by identification using sequencing of blaOXA genes. Our findings showed that carbapenem-resistant A. baumannii were the main species found in health care facilities and rivers. Most of the clinical isolates came from respiratory tract samples and harbored blaOXA-23, blaOXA-366, blaOXA-72, blaOXA-65, blaOXA-70, and blaOXA-143-like genes. The river isolates harbored only the blaOXA-51 and probably blaOXA-259 genes. We concluded that the most predominant type of carbapenem genes among isolates were both blaOXA-23 and blaOXA-65 among A. baumannii clinical isolates.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter , Proteínas Bacterianas , beta-Lactamasas , Ecuador/epidemiología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , Acinetobacter/efectos de los fármacos , Acinetobacter/enzimología , Pruebas de Sensibilidad Microbiana , Infección Hospitalaria/microbiología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Ríos/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter baumannii/enzimología , Reacción en Cadena de la Polimerasa Multiplex
12.
Sci Total Environ ; 927: 172340, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608909

RESUMEN

Tackling the impact of missing data in water management is crucial to ensure the reliability of scientific research that informs decision-making processes in public health. The goal of this study is to ascertain the root causes associated with cyanobacteria proliferation under major missing data scenarios. For this purpose, a dynamic missing data management methodology is proposed using Bayesian Machine Learning for accurate surface water quality prediction of a river from Limia basin (Spain). The methodology used entails a sequence of analytical steps, starting with data pre-processing, followed by the selection of a reliable dynamic Bayesian missing value prediction system, leading finally to a supervised analysis of the behavioral patterns exhibited by cyanobacteria. For that, a total of 2,118,844 data points were used, with 205,316 (9.69 %) missing values identified. The machine learning testing showed the iterative structural expectation maximization (SEM) as the best performing algorithm, above the dynamic imputation (DI) and entropy-based dynamic imputation methods (EBDI), enhancing in some cases the accuracy of imputations by approximately 50 % in R2, RMSE, NRMSE, and logarithmic loss values. These findings can impact how data on water quality is being processed and studied, thus, opening the door for more reliable water management strategies that better inform public health decisions.


Asunto(s)
Teorema de Bayes , Cianobacterias , Monitoreo del Ambiente , Aprendizaje Automático , Calidad del Agua , Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , España , Ríos/microbiología , Ríos/química , Microbiología del Agua
13.
Artículo en Inglés | MEDLINE | ID: mdl-38668744

RESUMEN

A Gram-stain-negative bacterium, designated LG-4T, was isolated from sediment of Qiantang River in Zhejiang Province, PR China. Cells were strictly aerobic, non-spore-forming, non-motile and short-rod-shaped (1.0-1.2 µm long and 0.7-0.8 µm wide). Growth occurred at 15-42 °C (optimum, 30 °C), at pH 5.0-9.0 (pH 7.0) and at 0-2.0 % (w/v) NaCl (optimum, 0.5 % NaCl). Strain LG-4T showed 95.75-96.90 % 16S rRNA gene sequence similarity to various type strains of the genera Tabrizicola, Pseudotabrizicola, Phaeovulum, Rhodobacter and Wagnerdoeblera of the family Paracoccaceae, and the most closely related strain was Tabrizicola soli ZQBWT (96.90 % similarity). The phylogenomic tree showed that strain LG-4T clustered in the family Paracoccaceae and was positioned outside of the clade composed of the genera Wagnerdoeblera and Falsigemmobacter. The average nucleotide identity and digital DNA-DNA hybridization values between strain LG-4T and the related type strains were in the range of 74.19-77.56 % and 16.70-25.80 %, respectively. The average amino acid identity (AAI) values between strain LG-4T and related type strains of the family Paracoccaceae were 60.94-69.73 %, which are below the genus boundary (70 %). The evolutionary distance (ED) values between LG-4T and the related genera of the family Paracoccaceae were 0.21-0.34, which are within the recommended standard (≥0.21-0.23) for defining a novel genus in the family Paracoccaceae. The predominant cellular fatty acids were C18 : 1 ω7c, C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0, the isoprenoid quinone was Q-10, and the major polar lipids were phospholipid, phosphatidylglycerol, phosphatidylcholine, aminolipid and two unknown polar lipids. The genome size was 4.7 Mb with 68.6 mol% G+C content. On the basis of distinct phylogenetic relationships, low AAI values and high ED values, and differential phenotypic, physiological and biochemical characteristics, strain LG-4T represents a novel species of a new genus in the family Paracoccaceae, for which the name Ruixingdingia sedimenti gen. nov., sp. nov. is proposed. The type strain is LG-4T (=MCCC 1K08849T=KCTC 8136T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Ríos , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Ácidos Grasos/análisis , ADN Bacteriano/genética , China , Sedimentos Geológicos/microbiología , Ríos/microbiología , Fosfolípidos/análisis , Ubiquinona/análogos & derivados
14.
J Environ Manage ; 357: 120627, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565034

RESUMEN

Serving as a vital linkage between surface water and groundwater, the hyporheic zone (HZ) plays a fundamental role in improving water quality and maintaining ecological security. In arid or semi-arid areas, effluent discharge from wastewater treatment facilities could occupy a predominant proportion of the total base flow of receiving rivers. Nonetheless the relationship between microbial activity, abundance and environmental factors in the HZ of effluent-receiving rivers appear to be rarely addressed. In this study, a spatiotemporal field study was performed in two representative effluent-dominated receiving rivers in Xi'an, China. Land use data, physical and chemical water quality parameters of surface and subsurface water were used as predictive variables, while the microbial respiratory electron transport system activity (ETSA), the Chao1 and Shannon index of total microbial community, as well as the Chao1 and Shannon index of denitrifying bacteria community were used as response variables, while ETSA was used as response variables indicating ecological processes and Shannon and Chao1 were utilized as parameters indicating microbial diversity. Two machine learning models were utilized to provide evidence-based information on how environmental factors interact and drive microbial activity and abundance in the HZ at variable depths. The models with Chao1 and Shannon as response variables exhibited excellent predictive performances (R2: 0.754-0.81 and 0.783-0.839). Dissolved organic nitrogen (DON) was the most important factor affecting the microbial functions, and an obvious threshold value of ∼2 mg/L was observed. Credible predictions of models with Chao1 and Shannon index of denitrifying bacteria community as response variables were detected (R2: 0.484-0.624 and 0.567-0.638), with soluble reactive phosphorus (SRP) being the key influencing factor. Fe (Ⅱ) was favorable in predicting denitrifying bacteria community. The ESTA model highlighted the importance of total nitrogen in the ecological health monitoring in HZ. These findings provide novel insights in predicting microbial activity and abundance in highly-impacted areas such as the HZ of effluent-dominated receiving rivers.


Asunto(s)
Microbiota , Ríos , Ríos/microbiología , Aguas Residuales , Bacterias , Calidad del Agua
15.
Sci Total Environ ; 928: 172348, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614353

RESUMEN

Many studies have characterised resistomes in river microbial communities. However, few have compared resistomes in parallel rural catchments that have few point-source inputs of antimicrobial genes (ARGs) and organisms (i.e., AMR) - catchments where one can contrast more nebulous drivers of AMR in rural rivers. Here, we used quantitative microbial profiling (QMP) to compare resistomes and microbiomes in two rural river catchments in Northern England, the Coquet and Eden in Northumberland and Cumbria, respectively, with different hydrological and geographical conditions. The Eden has higher flow rates, higher annual surface runoff, and longer periods of soil saturation, whereas the Coquet is drier and has lower flowrates. QMP analysis showed the Eden contained significantly more abundant microbes associated with soil sources, animal faeces, and wastewater than the Coquet, which had microbiomes like less polluted rivers (Wilcoxon test, p < 0.01). The Eden also had greater ARG abundances and resistome diversity (Kruskal Wallis, p < 0.05), and higher levels of potentially clinically relevant ARGs. The Eden catchment had greater and flashier runoff and more extensive agricultural land use in its middle reach, which explains higher levels of AMR in the river. Hydrological and geographic factors drive AMR in rural rivers, which must be considered in environmental monitoring programmes.


Asunto(s)
Monitoreo del Ambiente , Ríos , Ríos/microbiología , Inglaterra , Microbiota , Farmacorresistencia Microbiana/genética
16.
Sci Total Environ ; 928: 172482, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621529

RESUMEN

Various environmental factors play a role in the formation and collapse of Microcystis blooms. This study investigates the impact of heavy rainfall on cyanobacterial abundance, microbial community composition, and functional dynamics in the Nakdong River, South Korea, during typical and exceptionally rainy years. The results reveal distinct responses to rainfall variations, particularly in cyanobacterial dominance and physicochemical characteristics. In 2020, characterized by unprecedented rainfall from mid-July to August, Microcystis blooms were interrupted significantly, exhibiting lower cell densities and decreased water temperature, compared to normal bloom patterns in 2019. Moreover, microbial community composition varied, with increases in Gammaproteobacteria and notably in genera of Limnohabitans and Fluviicola. These alterations in environmental conditions and bacterial community were similar to those of the post-bloom period in late September 2019. It shows that heavy rainfall during summer leads to changes in environmental factors, consequently causing shifts in bacterial communities akin to those observed during the autumn-specific post-bloom period in typical years. These changes also accompany shifts in bacterial functions, primarily involved in the degradation of organic matter such as amino acids, fatty acids, and terpenoids, which are assumed to have been released due to the significant collapse of cyanobacteria. Our results demonstrate that heavy rainfall in early summer induces changes in the environmental factors and subsequently microbial communities and their functions, similar to those of the post-bloom period in autumn, leading to the earlier breakdown of Microcystis blooms.


Asunto(s)
Microbiota , Microcystis , Lluvia , Ríos , Microcystis/crecimiento & desarrollo , República de Corea , Ríos/microbiología , Eutrofización , Monitoreo del Ambiente , Estaciones del Año
17.
Environ Monit Assess ; 196(4): 408, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561517

RESUMEN

Cyanobacteria inhabiting lotic environments have been poorly studied and characterized in Mexico, despite their potential risks from cyanotoxin production. This article aims to fill this knowledge gap by assessing the importance of benthic cyanobacteria as potential cyanotoxin producers in central Mexican rivers through: (i) the taxonomic identification of cyanobacteria found in these rivers, (ii) the environmental characterization of their habitats, and (iii) testing for the presence of toxin producing genes in the encountered taxa. Additionally, we introduce and discuss the use of the term "CyanoHAMs" for lotic water environments. Populations of cyanobacteria were collected from ten mountain rivers and identified using molecular techniques. Subsequently, these taxa were evaluated for genes producing anatoxins and microcystins via PCR. Through RDA analyses, the collected cyanobacteria were grouped into one of three categories based on their environmental preferences for the following: (1) waters with high ionic concentrations, (2) cold-temperate waters, or (3) waters with high nutrient enrichment. Populations from six locations were identified to genus level: Ancylothrix sp., Cyanoplacoma sp., and Oxynema sp. The latter was found to contain the gene that produces anatoxins and microcystins in siliceous rivers, while Oxynema tested positive for the gene that produces microcystins in calcareous rivers. Our results suggest that eutrophic environments are not necessarily required for toxin-producing cyanobacteria. Our records of Compactonostoc, Oxynema, and Ancylothrix represent the first for Mexico. Four taxa were identified to species level: Wilmottia aff. murrayi, Nostoc tlalocii, Nostoc montejanii, and Dichothrix aff. willei, with only the first testing positive using PCR for anatoxin and microcystin-producing genes in siliceous rivers. Due to the differences between benthic growths with respect to planktonic ones, we propose the adoption of the term Cyanobacterial Harmful Algal Mats (CyanoHAMs) as a more precise descriptor for future studies.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Tropanos , Microcistinas/análisis , Floraciones de Algas Nocivas , México , Toxinas Bacterianas/genética , Toxinas Bacterianas/análisis , Monitoreo del Ambiente , Cianobacterias/genética , Toxinas de Cianobacterias , Ríos/microbiología
18.
Water Res ; 256: 121561, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581986

RESUMEN

Microorganisms in rivers indeed play a crucial role in nutrient cycling within aquatic ecosystems. Understanding the assembly mechanisms of bacterial communities in river networks is essential for predicting their special composition and functional characteristics in natural rivers. This study employed 16S rRNA gene amplicon sequence variation (ASVs) to scrutinize the bacterial community within the uniquely topographical Ili River network. The bacterial community composition varied across the three tributaries with distinct sources and the mainstream. The confluence of various sources diminished the diversity of the bacterial community and altered the functionality of within mainstream. We suggest that strong dispersal limitation predominantly shaped the community at the regional scale (46.6 %), underscoring the significant contribution of headwater sites to bacterial community composition. Contrary to expectation, the bacterial resources in the mainstream were not enriched by the higher diversity in three tributaries. Instead, confluence disturbance potentially increased the undominated processes (36.7 %) and alter the bacterial community composition at the local scale of the mainstream. The intricate coalescence at the confluence could potentially be an intriguing causative factor. Our research indicates that the composition of bacterial communities within intricate river networks exhibits biogeographic patterns, simultaneously influenced by river confluence and geographical features, necessitating multi-scale analysis.


Asunto(s)
Bacterias , ARN Ribosómico 16S , Ríos , Ríos/microbiología , Bacterias/genética , Bacterias/clasificación , ARN Ribosómico 16S/genética , Biodiversidad , Microbiología del Agua
19.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38627246

RESUMEN

AIMS: The present study aimed to use a conventional and metagenomic approach to investigate the microbiological diversity of water bodies in a network of drainage channels and rivers located in the central area of the city of Belém, northern Brazil, which is considered one of the largest cities in the Brazilian Amazon. METHODS AND RESULTS: In eight of the analyzed points, both bacterial and viral microbiological indicators of environmental contamination-physical-chemical and metals-were assessed. The bacterial resistance genes, drug resistance mechanisms, and viral viability in the environment were also assessed. A total of 473 families of bacteria and 83 families of viruses were identified. Based on the analysis of metals, the levels of three metals (Cd, Fe, and Mn) were found to be above the recommended acceptable level by local legislation. The levels of the following three physicochemical parameters were also higher than recommended: biochemical oxygen demand, dissolved oxygen, and turbidity. Sixty-three bacterial resistance genes that conferred resistance to 13 different classes of antimicrobials were identified. Further, five mechanisms of antimicrobial resistance were identified and viral viability in the environment was confirmed. CONCLUSIONS: Intense human actions combined with a lack of public policies and poor environmental education of the population cause environmental degradation, especially in water bodies. Thus, urgent interventions are warranted to restore the quality of this precious and scarce asset worldwide.


Asunto(s)
Bacterias , Metagenómica , Microbiología del Agua , Brasil , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/efectos de los fármacos , Salud Ambiental , Ríos/microbiología , Ríos/virología , Virus/genética , Virus/aislamiento & purificación , Monitoreo del Ambiente , Farmacorresistencia Bacteriana/genética , Humanos , Ciudades , Metales/farmacología
20.
Environ Sci Pollut Res Int ; 31(20): 29930-29938, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598157

RESUMEN

An in situ integrated system, consisting of ecological floating islands (EFI), ecological riverbeds (ER), and ecological filter dams (EFD), was built in a ditch only receiving the effluent of sewage plant; the effect of in situ technologies on the distribution of aquatic pathogen was investigated. The results showed the aquatic pathogen decreased along the ditch. Specifically, the relative abundance of Legionella, Aeromonas, and Acinetobacter decreased from 0.032, 0.035, and 0.26 to 0.026%, 0.012%, and 0.08%, respectively. Sedimentation, filtration, and sorption (provided by plant roots and biofilms on substrates) were principal processes for the removal. The nitrogen removal bacteria to prevent the potential risk of eutrophication were also evaluated. The EFI and ER were the dominant sites for Nitrosomonas (34.96%, 32.84%) and Nitrospira (35.74%, 54.73%) enrichment, while EFI and EFD facilitated the enrichment of denitrification bacteria. Notably, the relative abundance of endogenous denitrifiers (DNB-en) (including Dechloromonas at 9.72%, Thermomonas at 0.58%, and Saccharibacteria at 2.55%) exceeded those of exogenous denitrifiers (DNB-ex) (Thauera at 0.20%, Staphylococcus at 0.005%, and Rhodobacter at 0.27%). This study demonstrated that the in situ integrated system was effective in reducing the abundance of pathogens in the drainage channel, and the deficiency of DNB-ex and carbon sources made nitrate removal difficult.


Asunto(s)
Ríos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Ríos/microbiología , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA